Monday, 21 February 2011




A software bug is the common term used to describe an error, flaw, mistake, failure, or fault in a computer program or system that produces an incorrect or unexpected result, or causes it to behave in unintended ways. Most bugs arise from mistakes and errors made by people in either a program's source code or its design, and a few are caused by compilers producing incorrect code. A program that contains a large number of bugs, and/or bugs that seriously interfere with its functionality, is said to be buggy. Reports detailing bugs in a program are commonly known as bug reports, fault reports, problem reports, trouble reports, change requests, and so forth.
Bugs trigger errors that can in turn have a wide variety of ripple effects, with varying levels of inconvenience to the user of the program. Some bugs have only a subtle effect on the program's functionality, and may thus lie undetected for a long time. More serious bugs may cause the program to crash or freeze leading to a denial of service. Others qualify as security bugs and might for example enable a malicious user to bypass access controls in order to obtain unauthorized privileges.
The results of bugs may be extremely serious. Bugs in the code controlling the Therac-25 radiation therapy machine were directly responsible for some patient deaths in the 1980s. In 1996, the European Space Agency's US$1 billion prototype Ariane 5 rocket was destroyed less than a minute after launch, due to a bug in the on-board guidance computer program. In June 1994, a Royal Air Force Chinook crashed into the Mull of Kintyre, killing 29. This was initially dismissed as pilot error, but an investigation by Computer Weekly uncovered sufficient evidence to convince a House of Lords inquiry that it may have been caused by a software bug in the aircraft's engine control computer.
In 2002, a study commissioned by the US Department of Commerce' National Institute of Standards and Technology concluded that software bugs, or errors, are so prevalent and so detrimental that they cost the US economy an estimated $59 billion annually, or about 0.6 percent of the gross domestic product.
The concept that software might contain errors dates back to 1843 in Ada Byron's notes on the analytical engine in which she speaks of the difficulty of preparing program 'cards' for Charles Babbage's Analytical engine:
...an analyzing process must equally have been performed in order to furnish the Analytical Engine with the necessary operative data; and that herein may also lie a possible source of error. Granted that the actual mechanism is unerring in its processes, the cards may give it wrong orders.
Use of the term "bug" to describe inexplicable defects has been a part of engineering jargon for many decades and predates computers and computer software; it may have originally been used in hardware engineering to describe mechanical malfunctions. For instance, Thomas Edison wrote the following words in a letter to an associate in 1878:
It has been just so in all of my inventions. The first step is an intuition, and comes with a burst, then difficulties arise—this thing gives out and [it is] then that 'Bugs' — as such little faults and difficulties are called—show themselves and months of intense watching, study and labor are requisite before commercial success or failure is certainly reached.
Baffle Ball, the first mechanical pinball game, was advertised as being "free of bugs" in 1931. Problems with military gear during World War II were referred to as bugs (or glitches).




Contain the notation "First actual case of bug being found."

The term "bug" was used in an account by computer pioneer Grace Hopper, who publicized the cause of a malfunction in an early electromechanical computer. A typical version of the story is given by this quote:
In 1946, when Hopper was released from active duty, she joined the Harvard Faculty at the Computation Laboratory where she continued her work on the Mark II and Mark III. Operators traced an error in the Mark II to a moth trapped in a relay, coining the term bug. This bug was carefully removed and taped to the log book. Stemming from the first bug, today we call errors or glitch's in a program a bug.
Hopper was not actually the one who found the insect, as she readily acknowledged. The date in the log book was 9 September 1947, although sometimes erroneously reported as 1945. The operators who did find it, including William "Bill" Burke, later of the Naval Weapons Laboratory, Dahlgren, Virginia, were familiar with the engineering term and, amused, kept the insect with the notation "First actual case of bug being found." Hopper loved to recount the story. This log book is on display in the Smithsonian National Museum of American History, complete with moth attached.
While it is certain that the Harvard Mark II operators did not coin the term "bug", it has been suggested that they did coin the related term, "debug". Even this is unlikely, since the Oxford English Dictionary entry for "debug" contains a use of "debugging" in the context of air-plane engines in 1945.

How bugs get into software
Bugs are a consequence of the nature of human factors in the programming task. They arise from oversights or mutual misunderstandings made by a software team during specification, design, coding, data entry and documentation. For example: In creating a relatively simple program to sort a list of words into alphabetical order, one's design might fail to consider what should happen when a word contains a hyphen. Perhaps, when converting the abstract design into the chosen programming language, one might inadvertently create an off-by-one error and fail to sort the last word in the list. Finally, when typing the resulting program into the computer, one might accidentally type a '<' where a '>' was intended, perhaps resulting in the words being sorted into reverse alphabetical order. More complex bugs can arise from unintended interactions between different parts of a computer program. This frequently occurs because computer programs can be complex—millions of lines long in some cases—often having been programmed by many people over a great length of time, so that programmers are unable to mentally track every possible way in which parts can interact. Another category of bug called a race condition comes about either when a process is running in more than one thread or two or more processes run simultaneously, and the exact order of execution of the critical sequences of code have not been properly synchronized.


0 comments:

Post a Comment

TrainingHUB. Powered by Blogger.

Total Pageviews

THE BEST QTP TRAINING INSTITUTE IN HYDERABAD

QTP Training in hyderabad

Sql Tutorial

Popular Posts

Our Facebook Page

TrainingHUB

Followers